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1 Introduction and Motivation
Up to day complex technical systems are characterized by the following main properties: hierarchical structure and
build-in system of the state control.

Hierarchical structure means that the system consists of subsystems which also are divided on sub-subsystems
etc. up to the lowest non-divisible components, to which we will refer as to units. Usually, hierarchical structures
have the property that the primary failures arise mainly at the lowest (elementary) level of the system. Then gradually
developing these failures it leads to the failure of blocks and subsystems of higher levels containing these failed
elements. This means that the failures of the whole system are mainly not instantaneous, but also gradual, i.e. from an
absolutely good state to complete failure state the system goes through several intermediate states (fault stages). Such
failures may change the state of the system and the quality of its operation, but do not necessarily lead to complete
system failure. From an abstract point of view these systems could be described as multi-state reliability systems. A
present-day state of the subject can be found in (1). Some models of multi-state hierarchical systems are considered
in (2), (3).

The presence of build-in system of control (SoC) leads to the fact that such systems are called Fault Tolerance
Systems (FTS). The SoC detects the faults and corrects them itself or gives a signal about the necessity of repair.
Some times and resources (costs, or reward loses) are incurred for the repair. In case that a system (subsystem or any
block) is put under repair, any further degradation is assumed impossible and after a repair it is assumed to be “as good
as new”. This means that the reliability of the system is partially controllable. Various repair policies are possible after
a gradual failure in some part of a system is detected, e.g. to replace the whole system, only the failed element, or
repair just some structural parts of the system. The case of the whole system repair is considered in (2), and the case
of the failed unit repair only is considered in (3). Different kind of preventive maintenance are considered by many
authors (see Gertsbakh (4) and the references therein).

Two main characteristics are common in the reliability studies: the life-time of the system, and its steady state
characteristics under some assumptions about repair process. The ways to evaluate these characteristics depend on
the approach to the following two aspects: probabilistic and structural. The probabilistic aspect deals with calculation
of the system states probabilities, and uses them in reliability calculations. The structural aspect considers kind of
aggregated direct evaluation of reliability characteristics for any given structure of a particular system.

The structure of system itself and its failure set are individual for each system (or class of systems) and should be
considered for each system individually. Here we will not consider special structural properties of systems and focus
on statistical properties of complex hierarchical systems reliability.

In this paper we propose a general approach to describe, model and evaluate the most common reliability charac-
teristics of complex hierarchical systems with various types of gradual failures and different repair policies.

2 A Mathematical Model
Consider some complex hierarchical multi-component system subject to gradual failures of different types as described
above. To specify the states space of the system and to define appropriate process describing its behavior let us
introduce vector index k = (i1, i2, . . . , iL(k)) which determine each unit of the system as belonging to appropriate
chain of blocks at any level with level of k-th unit denoted by L(k). Denote also by K the set of these indices (and



appropriate units) with K = #(K) number of units. Then the states space of the system can be represented as
E = {x = (xk : k ∈ K)}, where for any k ∈ K the integer xk represents the state of the k-th unit in sense of its
reliability. It can take different values, depending on its type, xk ∈ {0, 1, . . . mk}, where the exhausted state of k-th
unit is denoted by mk.

We model the system functioning with a finite state multi-dimensional Markov process

X = {Xk(t) : k ∈ K, t ≥ 0},

with set of states E, which should be specified for any particular system. Denote also by N the set of all normal
system states, by D the set of dangerous states, and by F the set of the full system breakdown states. Moreover it is
supposed that these subsets contain “boundary” sub-subsets ΓND, ΓNF and ΓDF , such that the transition to the states
in D and F is possible only from the states of these subsets.

Additional assumption concerns the structure of transition intensities of such a process. The specific of the reli-
ability models make it reasonable to suppose that in the case that gradual failure arises the process can jump only in
neighboring states, and some function f = fk(x) determines the states to which the process goes in the case of a fault
in k-th unit is detected and appropriate repair is completed. The repair function f can be given by different ways. The
cases in which as repair resulted in the whole system being renovated and only an unit renovated were considered in
(2), (3). Another repair policies are also possible, for example, some subsystem of given level could be renovated as a
repair result. This means that the transition intensities have the following form

a(x,y) =
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αk(x) for y = x + ek, x,y ∈ N ,
λk(x) for y = x + ek, x ∈ ΓN , y ∈ D,
βk(x) for y = x + ek, x,y ∈ D,
µk(x) for y = f(x), x ∈ D,
γk(x) for y = x + ek, x ∈ ΓN , y ∈ F ,
νk(x) for y = x + ek, x ∈ ΓN , y ∈ F .

(1)

Here and later notation ek means a unit vector with 1 at k-th position and zeros elsewhere. Different constrains to the
state space E and/or the failure set F of this process and various assumption about dependence of transition intensities
on the state give an opportunity to model a number of particular cases.

The Kolmogorov’s system of differential equations for the time dependent probabilities (TDP) and appropriate
algebraic system of equation for steady state probabilities (SSP) are given. In general these systems of equations give
the possibility to investigate (at least numerically) both the stationary and the time dependent reliability characteristics
of the system. In this paper we consider two cases, which admit close form and algorithmic solution, the case of Whole
System Repair Policy (SRP) and the case of only a Unit Repair Policy (URP) after he failure detection. To consider
these special cases we define a partial order in E as follows:

x < y, if xk ≤ yk for all k ∈ K and at least for one xk < yk,

and we will use the following notations.

xk(i) is the vector x with k-th component equals to i, i.e. xk(i) = x + (i − xk)ek;

Γr is a hyper-plane with any of r-th components does not equal zero;

pr(x) is a monotone path from state 0 to state x through hyper-plane Γr

αi = α(xi−1,xi)is the label of unit, which failure leads to transition from state xi−1 to state xi;

g(p(x)) =
∏

1≤i≤l

λα(xi−1)

γ(xi)
;

Pr(x) is the set of all monotone paths from state 0 to the state x ;

Gr(x) =
∑

p∈Pr(x)

g(p(x)) =
∑

k: xk>0

λk(x − ek)

γ(x)
Gr(x − ek) with G(0) = 1. (2)



3 FTS under Whole System Repair Policy
To simplify the model we will not make a distinction between the transition intensities inside the sets N, D, F and
between these sets themselves. We use for these the notation λk(x) and µk(x), and denote by γ(x) the total output
intensity from the state x. For the system under whole SRP the repair function is fk(x) = 0 and therefore accordingly
to the remark above the transition intensities take the form

a(x,y) =

{

λk(x) for y = x + ek,
µ(x) for y = 0.

(3)

Both the system of differential equations for the TDP and the system of algebraic equations for SSP of the process
with transition intensities (3) are given. The solution these systems can be represented in closed form. The SSP is
represented by the following theorem

Theorem 1. The SSP of the FTS under SRP after failure detection have the form

πr(x) =

[

∑

x∈E

G(x)

]−1

Gr(x), for any x ∈ Γr ⊂ E. ¤ (4)

The reliability function of the system coincides with the tail of the distribution for the time to first entrance of the
process X(t) into the failure set F . This distribution can be found from Kolmogorov’s differential equations for TDP
with initial condition π(0; 0) = 1, where all failure states are absorbing states, λ(x) = µ(x) = 0 for all x ∈ F .
In terms of Laplace transforms of TDP π̃(x; s) this system is turned into the system of algebraic equations, whose
solution is used in the following theorem, where we denote γ̃(x, s) = s+γ(x), and in the appropriate way change the
notation for functions g(x) and G(x) in (2) by g̃(x, s) and G̃(x, s).

Theorem 2. ((2)) The reliability function of FTS under SRP is

R(t) = 1 − πF (t) = 1 −
∑

x∈F

π(x; t), (5)

and π(x; t) has the Laplace transform

π̃(x; s) =



γ̃(0; s) −
∑

x∈E\0

µ(x)G̃(x; s)





−1

× G̃(x; s), x ∈ E. ¤ (6)

4 FTS under Unit Repair Policy
Consider now the FTS under URP. The repair function for the case under consideration is fk(x) = xk(0) and so in
terms of the notations (2) the transition intensities (1) are

a(x,y) =

{

λk(x) for y = x + ek,
µk(x) for y = xk(0),

(7)

With these transitions intensities we obtain the Kolmogorov’s system of differential equations for the TDP and
appropriate system of equations for SSP of the process. The SSP for this model can be given in algorithmic form and
represented in the following theorem.

Theorem 3. The SSP for the FTS under URP are a limit of successive approximations

πr(x) = lim
n→∞

π(n)
r (x), x ∈ Γr ⊂ E (8)



given by the formulas

π(n+1)
r (x) =

∑

k: xk>1

λk(x − ek)

γ(x)
π(n)

r (x − ek) +
∑

k: xk=1

λk(x − ek)

γ(x)
π

(n)
r−1(x − ek) +

+
∑

k: xk=0

∑

1≤i≤mk

µk(xk(i))

γ(x)
π

(n)
r+1(xk(i)), x ∈ Γr, (9)

with the initial approximation, defined by the formula (4) in the theorem 1. ¤

Analogously to the Theorem 2 in Theorem 4 the reliability function of the FTS under URP in terms of Laplace
transforms of TDP is presented.

Recursive formulas (2) and (9) provide algorithms for calculation of the SSP and the Laplace transforms of the
TDP. In the talk we discuss algorithms for calculation of the SSP. The algorithms for calculation of the Laplace
transforms of the TDP follow similar procedure.

5 Examples
As an example we consider the homogeneous hierarchical system with K units, each of which may pass only through
two stages of reliability (m = 1). Assume, that in this case the failure and repair intensities are λk(x) = λ, µk(x) =
µ, and introduce the parameter ρ = µ/λ.

Due to homogeneity the process X admits an aggregation, and so the SSP coincide for any x in each hyper-plane
and for the model under SRP they are

π(x) = πr = C
∏

1≤i≤r

i

K − i + iρ
for any x ∈ Γr

with the normalizing constant C equals

C =





∑

0≤r≤K

(

K

r

)

∏

1≤i≤K

i

K − i + iρ





−1

.

For the FTS under URP we aggregate the states in each hyper-plane Γr, and after the aggregation the process X is
reduced to a birth and death process with the phase states {0, 1, . . . ,K}. The SSP’s π̂r = P{X ∈ Γr} of this process
can be find in closed form, and they are:

π̂r = (1 + ρ)−1ρK−r.

The system failure probabilities for the cases if only the failure of all units leads to the system failure, and if failure
of any unit causes the system failure are given for both models. The numerical results for both model with K = 4 are
presented in the paper.
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